Quantitative and qualitative analysis of palatal rugae patterns in Gujarati population: A retrospective, cross-sectional study

##plugins.themes.academic_pro.article.main##

Jayasankar Pillai
Alka Banker
Amit Bhattacharya
Radha Gandhi
Nupur Patel
Sarthak Parikh

Abstract

Introduction: Palatal rugae are irregular and nonidentical mucosal elevations seen on the anterior third of palate. They are arranged in transverse direction on either side of the median palatine raphe (MPR) and are protected from high temperature and trauma because of their rational position in the oral cavity. Their number and patterns are not uniform in all the individuals, and they appear to vary in different population subsets. The study of palatal rugae is termed as “Rugoscopy” or “Palatoscopy”, and it finds its application in various fields such as anthropology, orthodontics, forensic sciences; including forensic odonto-stomatology. Aim: The aim of this study was to evaluate the quantitative and qualitative parameters of palatal rugae using pre-orthodontic study models of Gujarati samples. Objectives: (1) To identify the predominant palatal arch forms in the study samples. (2) To evaluate and correlate the rugae count in both male and female samples with the different palatal arch forms. (3) To assess the symmetry and/or asymmetry in rugae count between the right and left side. (4) To analyze and correlate the qualitative characters such as size, shape, direction, and unification in male and female study samples. Materials and Methods: One hundred pre-orthodontic maxillary dental stone casts of patients with an age range of 17–25 years were selected. The outlines of the rugae were traced using microtip graphite pencil and examined using magnifying glass for different patterns. The quantity and quality of rugae patterns were recorded according to Thomas et al. classification and the data were statistically analyzed by the statistician using SPSS program. Results: Overall, 962 rugae were observed in the study sample. The mean rugae count was 9.86 in males and 9.38 in females. The left side rugae count was more than the right side in both the sexes and it was not statistically significant. Fifty-six percent of the samples showed asymmetry in rugae count between the right and left. Class B palatal arch form was the most common type in the study samples. The number of primary rugae count was more in both the sexes. The distribution of straight (40.2%) and curved (40.4%) types of rugae were almost equal in males but in females, the straight rugae pattern (42.2%) was more than the curved (36.9%), followed by wavy and circular. Of 962 rugae, 36.4% were of horizontal type followed by forward (33.4%) and backward (29.2%). About 1 % of rugae showed perpendicular pattern and only 9.25% showed unification pattern and the divergent type of unification was more common than the convergent type. Conclusion: There is no gender discrimination in relation to any of the metric or non-metric parameters of the palatal rugae in this study samples. No two samples showed similarity in the distribution of palatal rugae patterns. The straight and horizontal rugae distributions were predominant in our Gujarati Study samples.

##plugins.themes.academic_pro.article.details##

How to Cite
Jayasankar Pillai, Alka Banker, Amit Bhattacharya, Radha Gandhi, Nupur Patel, & Sarthak Parikh. (2016). Quantitative and qualitative analysis of palatal rugae patterns in Gujarati population: A retrospective, cross-sectional study. Journal of Forensic Dental Sciences, 8(3), 126–134. https://doi.org/10.4103/0975-1475.195110

References

  1. Berkovitz BK, Holland GR, Moxham BJ. Oral Anatomy, Histology and Embryology. 3rd ed. London: Mosby; 2002. p. 4.
  2. Nanci A. Tencate’s Oral Histology: Development, Structure and Function. 6th ed. London: Mosby; 2003. p. 363.
  3. Pueyo VM, Garrido BR, Sánchez JS. Odontología Legally Forense. Vol. 23. Masson: Barcelona; 1994. p. 277-92.
  4. English WR, Robison SF, Summitt JB, Oesterle LJ, Brannon RB, Morlang WM. Individuality of human palatal rugae. J Forensic Sci 1988;33:718-26.
  5. Hauser G, Daponte A, Roberts MJ. Palatal rugae. J Anat 1989;165:237-49.
  6. Lysell L. Plicae palatinae transversae and papilla incisiva in man; a morphologic and genetic study. Acta Odontol Scand 1955;13 Suppl 18:5-137.
  7. Venegas VH, Valenzuda JS, López MC, Galdames IC. Palatal rugae: Systematic analysis of its shape and dimensions for use in human identification. Int J Morphol 2009;27:819-25.
  8. Thomas CJ, Kotze TJ. The palatal ruga pattern in six southern African human populations. Part II: Inter-racial differences. J Dent Assoc S Afr 1983;38:166-72.
  9. Shetty SK, Kalia S, Patil K, Mahima VG. Palatal rugae pattern in Mysorean and Tibetan populations. Indian J Dent Res 2005;16:51-5.
  10. Nayak P, Acharya AB, Padmini AT, Kaveri H. Differences in the palatal rugae shape in two populations of India. Arch Oral Biol 2007;52:977-82.
  11. Thomas CJ, Kotze TJ. The palatal ruga pattern: A new classification. J Dent Assoc S Afr 1983;38:153-7.
  12. Shukla D, Chowdhry A, Bablani D, Jain P, Thapar R. Establishing the reliability of palatal rugae pattern in individual identification (following orthodontic treatment). J Forensic Odontostomatol 2011;29:20-9.
  13. Bhagwath S, Chandra L. Rugae pattern in a sample of population of Meerut – An institutional study. J Forensic Dent Sci 2014;6:122-5.
  14. Kamala R, Neha G, Amol B, Abishek S. Palatal rugae patterns as an aid for personal identification: A forensic study. Indian J Oral Med Radiol 2011;23:173-8.
  15. Arora V, Bagewadi A, Keluskar V, Shetti A. Comparision of palatal rugae patterns in two populations of India. Int J Med Toxicol Legal Med 2008;10:55-8.
  16. Paliwal A, Wanjari S, Parwani R. Palatal rugoscopy: Establishing identity. J Forensic Dent Sci 2010;2:27-31.
  17. Gondivkar SM, Patel S, Gadbail AR, Gaikwad RN, Chole R, Parikh RV. Morphological study of the palatal rugae in western Indian population. J Forensic Leg Med 2011;18:310-2.
  18. Jibi PM, Gautam KK, Basappa N, Raju OS. Morphological pattern of palatal rugae in children of Davangere. J Forensic Sci 2011;56:1192-7.
  19. Bharath ST, Kumar GR, Dhanapal R, Saraswathi T. Sex determination by discriminant function analysis of palatal rugae from a population of coastal Andhra. J Forensic Dent Sci 2011;3:58- 62.
  20. Surekha R, Anila K, Reddy VS, Hunasgi S, Ravikumar S, Ramesh N. Assessment of palatal rugae patterns in Manipuri and Kerala population. J Forensic Dent Sci 2012;4:93-6.
  21. Shanmugam S, Anuthama K, Shaikh H, Murali K, Suresan V, Nisharudeen K, et al. Palatal rugae in population differentiation between South and North Indians: A discriminant function analysis. J Forensic Dent Sci 2012;4:75-9.
  22. Babu GS, Bharath TS, Kumar NG. Characteristics of palatal rugae patterns in West Godavari population of India. J Clin Diagn Res 2013;7:2356-9.
  23. Byatnal A, Byatnal A, Kiran AR, Samata Y, Guruprasad Y, Telagi N. Palatoscopy: An adjunct to forensic odontology: A comparative study among five different populations of India. J Nat Sci Biol Med 2014;5:52-5.
  24. Kallianpur S, Desai A, Kasetty S, Sudheendra U, Joshi P. An anthropometric analysis of facial height, arch length, and palatal rugae in the Indian and Nepalese population. J Forensic Dent Sci 2011;3:33-7.
  25. Kapali S, Townsend G, Richards L, Parish T. Palatal rugae patterns in Australian aborigines and Caucasians. Aust Dent J 1997;42:129- 33.
  26. Fahmi FM, Al-Shamrani SM, Talic YF. Rugae patterns in a Saudi population sample of males and females. Saudi Dent J 2001;13:92-5.
  27. Saraf A, Bedia S, Indurkar A, Degwekar S, Bhowate R. Rugae patterns as an adjunct to sex differentiation in forensic identification. J Forensic Odontostomatol 2011;29:14-9.
  28. Dennis EO. Palatal rugae patterns of hobos in Abraka, South – Southern Nigeria. Int J Morphol 2012;30:70-9.
  29. Sharma P, Saxena S, Rathod V. Comparative reliability of cheiloscopy and palatoscopy in human identification. Indian J Dent Res 2009;20:453-7.
  30. Rai B, Anand SC. Palatal rugae: In forensic examination. Indian Internet J Forensic Med Toxicol 2007;5:14-6.
  31. Rath R, Reginald BA. Palatal rugae: An effective marker in population differentiation. J Forensic Dent Sci 2014;6:46-50.
  32. Shetty DK, Machale PS, Savant SC, Taqi SA. Comparison of palatal rugae patterns in Kodava and Malayalee populations of South India. J Forensic Dent Sci 2013;5:85-9.