In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification

##plugins.themes.academic_pro.article.main##

Freddy Moreno
Diego Vallejo
Herney Garzón
Sandra Moreno

Abstract

Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: I n vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE ® ) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification.

##plugins.themes.academic_pro.article.details##

How to Cite
Freddy Moreno, Diego Vallejo, Herney Garzón, & Sandra Moreno. (2013). In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification. Journal of Forensic Dental Sciences, 5(2), 77–84. https://doi.org/10.4103/0975-1475.119766

References

  1. Harvey W. Identity by teeth and the marking of dentures. Br Dent J 1966;121:334‑40.
  2. Turner CH, FletcherAM, Ritchie GM. Denture marking and human identification. Br Dent J 1976;141:114‑7.
  3. Ryan LD, KellerJB, Rogers DE, Schaeffer L. Clear acrylic resin T‑bar used in denture identification. J Prosthet Dent 1993;70:189‑90.
  4. Berry FA, Logan GI, Plata R, Riegel R. A postfabrication technique for identification of prosthetic devices. J Prosthet Dent 1995;73:341‑3.
  5. Cross P, WolfaardtJF. Denture identification system. JProsthet Dent 1995;74:551‑2.
  6. LingBC. Computer‑printer denture microlabeling system. JProsthet Dent 1998;79:363‑364.
  7. Reeson MG. A simple and inexpensive inclusion technique for denture identification. J Prosthet Dent 2001;86:441‑2.
  8. Moya V, Roldan B, Sánchez JA. Dental Materials identification. In legal and forensic dentistry. First Edition. Barcelona: Editorial Masson S. A; 1994. p. 269‑76.
  9. Gladfelter IA, Smith BE. An evaluation of microdisk for dental identification. J Prosthet Dent 1989;352‑5.
  10. Hansen RW. Intraoral micro‑identification discs. J Stomatol 1991;9:77‑91.
  11. Rajan M, Julian R. A new method of marking dentures using microchips. J Forensic Odontostomatol 2002;20:1‑5.
  12. Millet C, Jeannin C. Incorporation of microchips to facilitate denture identification by radio frequency tagging. J Prosthet Dent 2004;92:588‑90.
  13. Dentalax Coorporation (Website). Available from: http://www. dentalax.com [Last accessed on 2007 Feb].
  14. Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID‑tag into human molars to reduce hard forensic identification labor. Part I: Working principle. Forensic Sci Int 2006;159:33‑9.
  15. Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID‑tag into human molars to reduce hard forensic identification labor. Part 2: Physical properties. Forensic Sci Int 2006;159:40‑6.
  16. Ministry of Social Protection. Resolution which establishes academic standards and administrative techniques for health research. resolution 008430/1993 de 4 of October (accessed in October of 2006). Available from: http://www.minproteccionsocial.gov.co/vbecontent/library/ documents/DocNewsNo267711.pdf [Last accessed on 2011 Apr 16].
  17. World Medical Association. Ethical Principles for Medical Research Involving Human Helsinki Declaration. Finland, June 1964. Available from: http://www.wma.net/s/policy/b3.htm [Last accessed on 2005 Jan].
  18. ISO, 2003. 11405. Dental materials: Testing of adhesion to tooth structure. International Organisation for Standardization.
  19. 3M ESPE. Available from: http://solutions. 3m.com/wps/portal/3M/ en_WW/3MESPE/worldwide/. [Last accessed on 2007].
  20. Filtek Silorane Technical Profile: Low Shrink Posterior Restorative. Country; 2007. Available from: http://multimedia. 3m.com/ mws/mediawebserver?mwsId=SSSSSu7zK1fslxtUNY_9M8_ Sev7qe17zHvTSevTSeSSSSSS [Last accesed on 2009 Nov].
  21. Frankenberger R, Strobel WO, Kramer N, Lohbauer U, Winterscheidt J, Winterscheidt B, et al. Evaluation of the fatigue behavior of the resin‑dentin bond with the use of different methods. J Biomed Mater Res B Appl Biomater 2003;67:712‑21.
  22. Okeson JP. Management of Temporomandibular Disorders and Occlusion. 3rd ed. Chicago: Mosby Year Book; 1993.
  23. Sánchez A, Delgado L. Estado oclusal y rendimiento masticatorio. Acta Odontológica Venezolana 2006;44. Available from: http://www. actaodontologica.com/44_2_2006/estado_oclusal_rendimiento_ masticatorio.asp [Last access on 2006 Jan].
  24. Naranjo M, Ortiz P, Díaz M, Gómez M, MC Patiño. Fracture resistance of teeth restored with composite intact and subjected to constant load. Revista CES Dentistry 2007;20:31-8.
  25. De Freitas CR, Miranda ML, Andrade MF, Flores VH, Vaz LG, Guimaraes C. Resistance to maxillary premolar fractures after restoration on class II preparations with resin composite or ceromer. Quintessence Int 2002;33:589‑94.