Sex Determination and Sex Differentiation

##plugins.themes.academic_pro.article.main##

G. B. Protyusha
Sivapathasundharam B.

Abstract

Sex determination is arguably the most defining moment of our lives, the point where we inherit X or Y chromosome from our father. This initiates a cascade of events that sets in a train of morphological changes, genetic regulations and molecular mechanisms. Following this, our fate is further sealed during sex differentiation and gonadal development owing to the action of sex-specific gonadal hormones. Therefore, the profoundly divergent journeys of male and female lives are decided just by the toss of a genetic coin. The existence of a third gender is also an undeniable aspect of our society. The understanding of the functioning and genetic regulation of the complex process of sexual determination and differentiation is pivotal in comprehension of the basis of human life. Any deviation from the usual mechanisms in the critical stages of development leads to disorders of sexual differentiation leading to sexual ambiguity among individuals. This review discusses the mechanisms that contribute to female and male sex determination and gonadal development, in an attempt to understand the basics of human sex.

##plugins.themes.academic_pro.article.details##

How to Cite
Protyusha, G. B., & B., S. (2020). Sex Determination and Sex Differentiation. Journal of Forensic Dental Sciences, 12(1), 72–78. https://doi.org/10.18311/jfds/12/1/2020.12

References

  1. Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in Mammals. 2021; 1-28.
  2. Forconi M, Canapa A, Barucca M, Biscotti MA, Capriglione T, Buonocore F, et al. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS One. 2013; 8(4). PMid: 23634199 PMCid: PMC3636272. https://doi.org/10.1371/journal.pone.0056006 DOI: https://doi.org/10.1371/journal.pone.0056006
  3. Graves JAM, Peichel CL. Figure 1. Phylogeny and sexdetermination systems in vertebrates. 2010.
  4. McClelland K, Bowles J, Koopman P. Male sex determination: Insights into molecular mechanisms. Asian J Androl. 2012; 14(1):164–71. PMid: 22179516 PMCid: PMC3735148. https://doi.org/10.1038/aja.2011.169 DOI: https://doi.org/10.1038/aja.2011.169
  5. Short SE, Yang YC, Jenkins TM. Sex, gender, genetics and health. AJPH 2013;103 S1(Suppl 1):S93–S101. PMid: 23927517 PMCid: PMC3786754. https://doi.org/10.2105/ AJPH.2013.301229 DOI: https://doi.org/10.2105/AJPH.2013.301229
  6. Kalra S. The eunuchs of India: An endocrine eye opener. Indian J Endocrinol Metab. 2012; 16(3):377. PMid: 22629502 PMCid: PMC3354843. https://doi.org/10.4103/2230-8210.95676 DOI: https://doi.org/10.4103/2230-8210.95676
  7. Ramakrishnan K, Sharma S, Sreeja C, Pratima DB, Aesha I, Vijayabanu B. Sex determination in forensic odontology: A review. J Pharm Bioallied Sci. 2015;7(6):S398–402. PMid: 26538886 PMCid: PMC4606628. https://doi.org/10.4103/0975-7406.163469 DOI: https://doi.org/10.4103/0975-7406.163469
  8. Jacobs PA. S JA. A case of human intersexuality having a possible XXY sex-determining mechanism.
  9. Nature. 1959;183:302–3. PMid: 13632697. https://doi.org/10.1038/183302a0 DOI: https://doi.org/10.1038/183302a0
  10. Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet, 1959; 1:711–713. DOI: https://doi.org/10.1016/S0140-6736(59)91893-8
  11. Jost A, Jost CA. Problems of fetal endocrinology: The gonadal and hypophyseal hormones. RPHR. 1953;8:379–418.
  12. Gilbert SF. Developmental biology. 6th ed. Sunderland (MA): Sinauer Associates; 2000. Chromosomal Sex Determination in Mammals. 2000.
  13. She ZY, Yang WX. Molecular mechanisms involved in mammalian primary sex determination. Mol Endocrinol. 2014; 53(1): R21-37. PMid: 24928207. https://doi.org/10.1530/ JME-14-0018 DOI: https://doi.org/10.1530/JME-14-0018
  14. Merchant-Larios H, Moreno-Mendoza N, Buehr M. The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int J Dev Biol. 1993; 37(3):407–15.
  15. Hacker A, Capel B, Goodfellow P, Lovell-Badge R. Expression of Sry the mouse sex determining gene. Development. 1995;121:1603–14. DOI: https://doi.org/10.1242/dev.121.6.1603
  16. Und LFZA der maennlichen G, Analdruesen der Saeugethiere. Z Wiss Zool. 1850;2:1-57.
  17. Capel B. The battle of the sexes. Mech Dev. 2000; 92:89–103. https://doi.org/10.1016/S0925-4773(99)00327-5 DOI: https://doi.org/10.1016/S0925-4773(99)00327-5
  18. Parr BA. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature. 1998; 395:707–10. PMid: 9790192. https://doi.org/10.1038/27221 DOI: https://doi.org/10.1038/27221
  19. Langman J, Wilson DB. Embryology and congenital malformations of the female genital tract. A. Blaustein (ed.), Pathology of the Female Genital Tract, 2nd Ed. New YorkL Springer-Verlag; 1982. p. 1–20. https://doi.org/10.1007/9781-4757-1767-9_1 DOI: https://doi.org/10.1007/978-1-4757-1767-9_1
  20. Siiteri PK, Wilson JD. Testosterone formation and metabolism during male sexual differentiation in the human embryo. JCEM. 1974;38:113–25. PMid: 4809636. https://doi.org/10.1210/jcem-38-1-113 DOI: https://doi.org/10.1210/jcem-38-1-113
  21. Biotechnology C. Clinical Biotechnology and Microbiology Genetics of Eunuchs : A Review. 2018; 1–15.
  22. Pfaff DW, Volkow ND. Neuroscience in the 21st century: From basic to clinical, second edition. Neurosci 21st Century From Basic to Clin Second Ed. 2016;1-4155. https://doi.org/10.1007/978-1-4939-3474-4 DOI: https://doi.org/10.1007/978-1-4939-3474-4
  23. Jost A, Vigier B, Prepin J, Perchelett PJ. Studies on sex differentiation in mammals. Science Direct. 1973; 29:1–41. PMid: 4584366. https://doi.org/10.1016/B978-012-571129-6.50004-X DOI: https://doi.org/10.1016/B978-0-12-571129-6.50004-X
  24. Wallen K. The organizational hypothesis: Reflections on the 50th anniversary of the publication of Phoenix, Goy, Gerall and Y (1959). Hormones and Behavior. 2009;55(5):561–5. PMid: 19446072. https://doi.org/10.1016/j.yhbeh.2009.03.009 DOI: https://doi.org/10.1016/j.yhbeh.2009.03.009
  25. Phoenix Ch, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65(3):369–82. https://doi.org/10.1210/endo-65-3-369 PMid:14432658 DOI: https://doi.org/10.1210/endo-65-3-369
  26. Lippa RA. Subdomains of gender-related occupational interests: Do they form a cohesive bipolar M-F dimension? J Pers. 2005;73(3):693–729. PMid: 15854011. https://doi.org/10.1111/j.1467-6494.2005.00326.x DOI: https://doi.org/10.1111/j.1467-6494.2005.00326.x
  27. Joel D, Berman Z, Tavor I, Wexler N, Gaber O, Stein Y, Shefi N, Pool J, Urchs S, Margulies DS, Liem F, Hanggi J, Jancke L AYS beyond the genitalia: T human brain mosaic. PNASUSA 2015; 112:15468–73. PMid: 26621705 PMCid: PMC4687544. https://doi.org/10.1073/pnas.1509654112 DOI: https://doi.org/10.1073/pnas.1509654112
  28. El-Sherbiny M. Disorders of sexual differentiation: I. Genetics and pathology. AJU. 2013;11(1):19–26. PMid: 26579240 PMCid: PMC4442963. https://doi.org/10.1016/j.aju.2012.11.005 DOI: https://doi.org/10.1016/j.aju.2012.11.005
  29. Roselli CE. Neurobiology of gender identity and sexual orientation. J Neuroendocrinol. 2018;30 (7):e12562. DOI: https://doi.org/10.1111/jne.12562