Significance of Stem Cells in Forensic Dentistry

##plugins.themes.academic_pro.article.main##

B. Karthika
Shamsul Nisa

Abstract

In forensic point of view and for genetic study, biological samples collected at a crime scene serve as a significant tool, in order to resolve crimes by identifying the person. In some scenarios, individual identification gets masked by chimera persons, where the chimera person cells will have different DNA. The use of biological traces which are recorded by a person’s touch while handling items raises the chance of forensic study system. Therefore, DNA profiling can be obtained from items that were touched, which inturn becomes an useful means for forensic mode of investigation. Chimerism investigations are recognized processes to examine the condition of Hematopoietic Stem Cell Transplantation (HSCT) to analyze peripheral blood and recipient’s bone marrow samples for non-malignant and malignant hematologic diseases. In adults, ectomesenchymal cells identified in oral and maxillofacial tissues are promising for future dental stem cell therapies, because the oral tissues area rich source for stem cells. Dental stem cells have various expressive profiles and exist in specific niches. Apart from these applications, this review article highlights dental stem cells significances in forensic dental investigations.

##plugins.themes.academic_pro.article.details##

How to Cite
Karthika, B., & Nisa, S. . (2021). Significance of Stem Cells in Forensic Dentistry. Journal of Forensic Dental Sciences, 13(1), 52–55. https://doi.org/10.18311/jfds/13/1/2021.656

References

  1. Goodwin W, Linacre A, Hadi S. An introduction to forensic genetics. John Wiley and Sons. 2011.
  2. Mallett X, Blythe T, Berry R. Advances in Forensic Human Identification. CRC Press. 2014. https://doi.org/10.1201/b16509 DOI: https://doi.org/10.1201/b16509
  3. Jamal M, Chogle S, Goodis H, Karam SM. Dental stem cells and their potential role in regenerative medicine. J Med Sci, 2011; 4:53–61. https://doi. org/10.2174/1996327001104020053 DOI: https://doi.org/10.2174/1996327001104020053
  4. Sloan AJ, Waddington RJ. Dental pulp stem cells: What, where, how? International Journal of Paediatric Dentistry. 2009; 19:61–70. PMid: 19120509. https://doi.org/10.1111/ j.1365-263X.2008.00964.x DOI: https://doi.org/10.1111/j.1365-263X.2008.00964.x
  5. 5. Potsch L, Meyer U, Rothschild S, Schneider PM, Rittner C. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int J Legal Med. 1992; 105:139–43. PMid: 1419874. https://doi.org/10.1007/BF01625165 DOI: https://doi.org/10.1007/BF01625165
  6. Sweet D, Hildebrand D. Recovery of DNA from human teeth by cryogenic grinding. J Forensic Sci. 1998; 43:1199– 202. PMid: 9846398. https://doi.org/10.1520/JFS14385J DOI: https://doi.org/10.1520/JFS14385J
  7. Sweet D, Lorente JA, Valenzuela A, Lorente M, Villanueva E. PCR-based DNA typing of saliva stains recovered from human skin. J Forensic Sci. 1997; 42:447–51. PMid: 9144934. https://doi.org/10.1520/JFS14146J DOI: https://doi.org/10.1520/JFS14146J
  8. Koh D, Ng DP, Choo SG, Ng V, Fu Q. Effect of storage conditions on the extraction of PCRquality genomic DNA from saliva. Clin Chim Acta. 2004; 343:191–4. PMid: 15115694. https://doi.org/10.1016/j.cccn.2004.01.013 DOI: https://doi.org/10.1016/j.cccn.2004.01.013
  9. Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: New variations on an old theme, Bone Marrow Transplant. 2004; 34:1–12. PMid: 15156163. https://doi.org/10.1038/sj.bmt.1704525 DOI: https://doi.org/10.1038/sj.bmt.1704525
  10. Thiede C. Diagnostic chimerism analysis after allogeneic stem cell transplantation: New methods and markers. Am J Pharmacogenomics. 2004; 4:177–87. PMid: 15174899. https://doi.org/10.2165/00129785-200404030-00005 DOI: https://doi.org/10.2165/00129785-200404030-00005
  11. Zhou Y, Li S, Zhou J, Wang L, Song X, Lu X, Wang J, Ye Y, Ying B, Jia Y. DNA profiling in blood, buccal swabs and hair follicles of patients after allogeneic peripheral blood stem cells transplantation. Leg Med. 2011; 13(1):47–51. PMid: 21035373. https://doi.org/10.1016/j.legalmed.2010.09.005
  12. Bach C, Tomova E, Goldmann K, Weisbach V, RoeslerW, Mackensen A. Winkler J, Spriewald BM. Monitoring of hematopoietic chimerism by real-time quantitative PCR of micro insertions/deletions in samples with low DNA quantities. Transfus Med Hemotherapy. 2015; 42: 38–45. PMid: 25960714 PMCid: PMC4404891. https://doi.org/10.1159/000370255 DOI: https://doi.org/10.1159/000370255
  13. Chen DP, Tseng CP, Wang WT, Wang MC, Tsai SH, Sun CF. Real-time biallelic polymorphism-polymerase chain reaction for chimerism monitoring of hematopoietic stem cell transplantation relapsed patients. Clin Chim Acta Int J Clin Chem. 2011; 412:625–30. PMid: 21185273. https://doi.org/10.1016/j.cca.2010.12.018 DOI: https://doi.org/10.1016/j.cca.2010.12.018
  14. Tyler J, Kumer L, Fisher C, Casey H, Shike H. Personalized chimerism test that uses selection of short tandem repeat or quantitative PCR depending on patient’s chimerism status. J Mol Diagn. 2019; 21:483–90. PMid: 30797064. https://doi.org/10.1016/j.jmoldx.2019.01.007 DOI: https://doi.org/10.1016/j.jmoldx.2019.01.007
  15. Masmas TN, Madsen HO, Petersen SL, Ryder LP, Svejgaard A, Alizadeh M, Vindelov LL. Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction. Biol Blood Marrow Transpl. 2005; 11:558–66. PMid: 15983556. https://doi.org/10.1016/j.bbmt.2005.04.004 DOI: https://doi.org/10.1016/j.bbmt.2005.04.004
  16. Bond JW, Hammond C. The value of DNA material recovered from crime scenes. J Forensic Sci. 2008; 53:797–801. PMid: 18503525. https://doi.org/10.1111/j.1556-4029.2008.00746.x DOI: https://doi.org/10.1111/j.1556-4029.2008.00746.x
  17. Santurtun A, Riancho JA, Santurtún M, Richard C, Colorado MM, GarcíaUnzueta M, Zarrabeitia MT. Genetic DNA profile in urine and hair follicles from patients who have undergone allogeneic hematopoietic stem cell transplantation. Sci Justice. 2017; 57:336–40. PMid: 28889862. https://doi.org/10.1016/j.scijus.2017.05.003 DOI: https://doi.org/10.1016/j.scijus.2017.05.003
  18. Li Y, Xie M, Wu J. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation. Biomed Rep. 2014; 804–8.
  19. http://dx.doi.org/10.3892/br.2014.332 DOI: https://doi.org/10.3892/br.2014.332
  20. Zhou Y, Li S, Zhou J, Wang L, Song X, Lu X, Wang M J, Ye Y, Ying BW, Jia Y. DNA profiling in blood, buccal swabs and hair follicles of patients after allogeneic peripheral blood stem cells transplantation. Leg Med. 2011; 13:47–51. PMid: 21035373. https://doi.org/10.1016/j.legalmed.2010.09.005 DOI: https://doi.org/10.1016/j.legalmed.2010.09.005
  21. Thiede C, Prange-Krex G, Freiberg-Richter J, Bornhauser M, Ehninger G. Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplant. 2000; 25(5): 575–7. PMid: 10713640. https://doi.org/10.1038/sj.bmt.1702170 DOI: https://doi.org/10.1038/sj.bmt.1702170
  22. Theda C, Hwang SH, Czajko A, Loke YJ, Leong P, Craig JM. Quantitation of the cellular content of saliva and buccal swab samples. Sci Rep. 2018; 8(1):1– 8. PMid: 29720614 PMCid: PMC5932057. DOI: https://doi.org/10.1038/s41598-018-25311-0
  23. https://doi.org/10.1038/s41598-01825311-0
  24. Tran SD, Pillemer SR, Dutra A, Barrett AJ, Brownstein MJ, Key S, Pak E, Leakan RA, Kingman A, Yamada KM, Baum BJ, Mezey E. Differentiation of human bone marrowderived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet. 2003; 361:1084–8. https://doi.org/10.1016/S0140-6736(03)12894-2 DOI: https://doi.org/10.1016/S0140-6736(03)12894-2