Journal of Forensic Dental Sciences
Users Online: 2421 
Home Print this page  Email this page Small font size Default font size Increase font size
Wide layoutNarrow layoutFull screen layout
  Home | About JFDS | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Online submission | Contact us | Advertise | Login 
Year : 2009  |  Volume : 1  |  Issue : 1  |  Page : 17-23

Effects of high temperatures on different dental restorative systems: Experimental study to aid identification processes

1 Oral and Maxillofacial Surgery Research Group (Dental Anthropology and Forensic Dentistry Research Line) of the Dentistry School, University of Valle, Colombia
2 Dental Materials Unit, Department of Odontostomatology, University of Pavia, Italy
3 Specialized Identification Laboratory, General Office of the Public Prosecutor of the Nation, Colombia

Correspondence Address:
Freddy Moreno
Universidad del Valle, Escuela de Odontología, Calle 4B No. 36-00 Edificio 132 Oficina 308, A. A. 25360, Cali
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0974-2948.50883

Rights and Permissions

This "in vitro" study was to observe the effects of high temperatures on teeth restored by (1) amalgam overlaying glass ionomer bases, (2) composite/adhesive system overlaying glass ionomer bases, (3) ZnO modified temporary filling material vs. unrestored teeth. Fifty un-restored teeth (control group), 50 teeth with class I amalgam restorations and glass ionomer bases, 50 teeth with class I composite/adhesive system restorations and glass ionomer bases and 50 teeth with class I ZnO modified temporary filling material restorations were placed in a furnace and heated at a rate of 10°C/min. The effects of the predetermined 200, 400, 600, 800, 1000 and 1200°C temperatures were examined macroscopically and then observed microscopically by means of a stereomicroscope. Our observations showed that the class I restorations made of amalgam on glass ionomer bases as far as the class I restorations made of ZnO modified temporary filling material can be identified till 1200°C because they maintain their shape despite the disintegration of the crowns, whilst the class I composite/adhesive system and the underplayed glass ionomer bases remained in place in an altered shape.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1103    
    Comments [Add]    
    Cited by others 1    

Recommend this journal